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Abstract. We inuoduce the general deformed differential operator. Using it the general 
deformed MV hierarchy is constructed. As an elementary example, we give the general deformed 
MV equations. In the form of the general deformation parameter expansion lhe general deformed 
Kdv equations generates the systems of the non-homogeneous linearized MV equations which are 
exactly solvable. In order to solve the general deformed mv hierarchy, we invoduce the general 
deformed exponential function. By using the dressed-operator method these exact solutions 
can be wnstructed. As an elementary example, we give some exact solutions of the non- 
homogeneous linearized K ~ V  equation system derived from the general deformed ~ d y  equations. 

1. Introduction 

The KdV equation [I] is widely applied in Physics. Many varieties and extensions of the 
KdV equation exist. An example is the q-deformed KdV equation presented by Zhang [2]. A 
method for obtaining the exact solutions for +is q-deformed KdV equation has been supplied 
by Wu, Zhang and Zheng [3]. We find that the usual KdV equation can undergo a speciak 
deformation, analogous to that undergone by the quantum p u p ,  and becomes a deformed 
Kdv one, which still owns infinitely many conservation laws and yet has exact soliton-like 
solutions. The essence of this progress is that after the usual differential operator is replaced 
by a deformed differential operator, one can still, obtain the Lax pair structure similar to 
the usual KdV hierarchy. The deformed KdV equation and its exact solutions can transform 
to the systems of the usual nonlinear partial differential equations and their exact solutions. 
This is a significant matter, because it is not an easy task to find out some sets of the usual 
nonlinear partial differential equations and their exact solutions. 

Recently we find in a further step that the deformation undergone by the Kdv hierarchy 
can be generalized to a more general formalism, i.e. the deformation is almost arbitrary. 
This general deformations of the mv hierarchy opens up extensively the field of possible 
research, bringing innumerable new varieties of the KdV hierarchy. We find that, although 
it is difficult to give an explicit expression for the exact solutions of the general deformed 
Kdv equations, the exact order-by-order solutions, after the general deformed KdV equations 
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transform order by order into the usual systems of nonlinear partial differential equations, 
can be given through a new method suggested by us. The purpose of this paper is to 
introduce the generd deformation, and to supply the rules for determining the general 
deformed KdV hierarchies and their exact solutions. The simplest system, i.e. the general 
deformed Kdv equation, and the transformation from the general deformed KdV equation to 
its various order systems of usual nonlinear partial tlifferential equations, as well the exact 
solutions of the general deformed Kdv equation and its derived systems of usual nonlinear 
partial differential equations, are given is this paper. These exactly solvable systems of 
the nonlinear partial differential equations not only supply a ready-made example to test 
the reliability of various criteria on integrability, but also set up an exact model to test the 
effectiveness of the various approximate methods for solving this problem. 

De-Hai zhang and Zu-Yu Wu 

2. The general deformed formal pseudo-differential operator 

First we have to introduce a variable transformation generated by a Q-operator [2] 

(QfW = f(& €1) (2.1) 

where q(x ,  E) is an arbitrary function in x and e but obeys q ( x ,  0) = x ,  which can be 
expanded by a formal parameter E, called the deformation parameter: 

(2.2) 
1 1 
2! 3! 

q(x .  e)  = x +q,(x)e + -q*(x)€Z+ -q3(x)e3 + ”’. 
The deformation parameter 6 is not necessarily a small one, but can be an arbitrary finite 
number provided the above expansion is convergent The operator Q used in [2] is a special 
case, q(x ,  E) = q x  = x + 2x6, q = 1 + 26, i.e. ql (x )  = 2r, qz(x) = q3(x) = . . . = 0, 
we call it the proportional defomtion, i.e. Q-deformation. The Q-operator and its inverse 
can be written in the operator form 

m l  
Q = l + ~ - ( q ( x , e ) - x ) ” ’ a ”  

f I !  
I t 4  

( 2 . 3 ~ )  

m 

e-’ = I + ~ ( I  - QY (2.36) 

which are obviously infiniteorder operators in terms of the usual differential operator 

After specifying theoperator Q, we define the general deformed differential operator 141 

“4 

a = a/ax. 

which is also a usual infinite-order differential operator 

It is obvious that D goes back to the usual differential operator ’a when e approaches 0. 
According to the definition of D, one can prove that the general deformed Leibniz rule is 

(2.6) ( D ( f W g ( x ) )  = (Df (x ) )g (x )  + ( Q f ( x ) ) ( W x ) )  
which can he expressed in operator form as 

Of = (QfP + (Of). (2.7) 
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Using equation (2.7) twice, one has 

D Z f  = ( Q z f ) D z  + ( ( Q D f )  + PQf )) D + PZf)  (2.8) 
it is notable that generally ( Q D f )  # ( D Q j ) .  The higher-order formulae can be obtained 
by using (2.7) repeatedly. It is very important that we should be able to define the inverse 
of D ,  
D - ' f  = (Q- ' j )D- '  - (Q-'DQ-'f)D-'+ (Q-'DQ-'DQ-'j)D-' - . . . (2.9) 
which is the generalization of the usual case 

(2.10) 
One can check that D .  D-'f  = D-' . D j  = f by using (2.7). The D can be expressed in 
operator form as 

a - ' j  = fa-' - (af)a-2 + (a2j7a-3 - . . . . 

D - I  = a-' + Ca-I(i - ~ 8 - l ) ' .  
W 

(2.11) 

By having D-' act on (2.9) repeatedly, we can obtain the formulae for the higher negative 
order case, D " .  The operators D' and D-' form a closed algebra with associativity. 

"=I 

Now we can define a general deformed formal pseudo-differential operator 
M 

K = k,(x)D" 
"=-ea 

(2.12) 

i.e. its highest order is M 2 0, but it has negative infinite orders of the general deformed 
differential operator D .  We further introduce the decomposition K = K+ + K- for the 
operator K: 

~M 
K+ = c k , , ( x ) D "  

"=O 

W 

K- = X k - , ( x ) D - " .  
"=I 

(2 .13~)  

(2.136) 

It is remarkable that the general deformed differential operator includes infinitely many 
arbitrary functions 41 ( x ) ,  qz(x), . . .; therefore we can obtain very general deformations. 

3. The general deformed KdV hierarchy and the general deformed KdV equation 

The construction of the general deformed KdV hierarchy is similar with usual case. The 
key point is that the usual differential operator a is replaced by the general deformed 
differential operator D .  The Nth general deformed KdV hierarchy consists of an infinite set 
of the general deformed differential equations with commuting flows, where the equations 
are about the coefficients V,(x, tp) (n = 0.1, . . . , N - 1) of a general deformed differential 
operator L of order N that has been put in the canonical form 

N-1 
L = D N - t  V,(x, tp)Dn. 

.=a 
In the algebra of the general deformed pseudo-differential operators the L has an unique 
Nth root L1IN. In the Lax representation [51 the pth flow of the N t h  general deformed KdV 
hierarchy, called the ( p ,  N) system, is given [61 by 

(3.2) 
a -L = [(LP")+, L] = [L, ( L q - 1  

at, 
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where the (t,) are called time parameters. 
The simplest system of the ( p ,  N) general deformed Kdv hierarchy is certainly be the 

(3 ,2)  system, which is called the system of general deformed KdV equations. Let us give 
this in order to illustrate the above procedure. This model is obtained by taking L to be the 
following general deformed differential operator of order two: 

De-Hai Z h n g  and Zu-Yu Wu 

L = D Z +  V1(x,t)D+Vo(x,t). (3.3) 
The formal expansion of L'/' in powers of D is given by 

(3.4) 

Since one later needs only the first five of the coefficients W-. in the general deformed KdV 
equations, one gives them in terms of VI and VO order by order as 

(3.5a) 

(3.56) 

(3.54 

WO = (1 + e,-'v1 
W-i = -(1 + Q)-'(-Vo + (DWo) + W i )  

w - ~  = -(I + Q ) - ' ( W - ~ ( Q - ~  w,) + ( D W - ~ )  + wow-,) 

+W-i(Q-'W-i) + (DW--2) + WOW-z) 

w - ~  = -(I + Q ) - ' ( - w - ~ ( Q - ' D Q - ~ w ~ )  + w - ~ ( Q - ~ w ~ )  

w - ~  = -(I + Q)-~(-W-~(Q-~DQ-'DQ-~W~) - W - , ( Q - ~ D Q - ~ W ~ )  

(3.54 

- W-z(Q-'D Q-' WO) + W-3 (Q-3 WO) - W-i ( Q-' D Q-' W-i ) 

+W-Z(Q-'W-I) + W-l(Q-'W-z) + (DW-3) + WOW-,). (3.5e) 

The general deformed differential operator appearing in the (3,Z) system is (L3Iz)+. Due 
to the last identity of (3.21, one needs only the first two terms of the general deformed 
pseudo-differential operator (L3Iz)- 

(3.6) ( L  312 )- = U-1D-l + C-zD-'+. . . 
where the coefficients U-I and U-2 are given by the following expressions: 

U-i = (D2W-,) + (DQW-z) + (QDW-2) + (QzW-3) 

+Vi(DW-i)+ Vi(QW-d+ Vow-i (3.7a) 

U-z = (0'W-z) + (Dew-3)  + (QDW-3) + (Q'W-4) 

+Vi(DW-z) + Vi(QW-3) + VOW-z. (3.7b) 

Now we can obtain the general deformed KdV equations by using (3.2) (let r3 = t )  and (3.6): 

(3.8a) 

avo 
at 
- =(Q2U-z)-U-z+(DQU-~~+~QDU-i)+V~(Q~-~)-U-i(Q-'Vi). (3.8b) 

It is notable that the operators D and Q play jointly important roles in the general deformed 
KdV equations. Not a single one of the two roles can be dispensed with. This new 
distinguishing feature is worthy of in-depth study. 
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4. The general deformed KdV equation in the deformation parameter expansion 

Usually we know the conventional differential equation well and are not familiar with the 
general deformed differential one. We rather express the general deformed KdV equations in 
terms of the usual differential equations. Since it is difficult to find the general expression, 
we expand them only up to the second order of the deformation parameter. The operators 
we need are written as 

(4.1) 
1 2 2  e = I + tqla + e2(&q2a + ?ql a ) + 0(t3) 

e-' = 1 - t q l a  + &q;a - +q2a + 2q1a ) + w e 3 )  

(1 + er1  = 4 - (4.3) 
D = a + +a2 + E2($q2a2 + ;q:a3) + 0(e3) .  (4.4) 

The functions VI and VO are also expanded up to second order 

VI = <GI + e2G2 + 0 ( c 3 )  (4.5) 
b = Fo + EFI + c2Fz + O(2). (4.6) 

Gi = qiFo (4 .7~)  

G2 = qlFi + $?zFo. (4.7b) 
Substituting them in (3.5H3.8) we finally obtain the general deformed Kdv equations in 
the expanded form of order two as: 

aFo/at = ; F ~ F ~ ) + ~ F ( ~ )  4 0  (4.8,) 

(4.2) 
1 2 2  

+ e2(-$q2a + Qqlq;a) + w e 3 )  

However, we find Out  that the functions G1 and Gz are solvable, which are given by 

a Fl 
a t  - = $Fl'' + ; Fl Fo) + iFoF1' - $FoFo'q1' - ;Fo2q1" - i F{q1" 

-7.41 3 ' F  0 (3) - I F  8 041 0) - 1F0q1(4) 8 (4.8b) 

- a F2 = ~ F Z ( ~ ) + ~ F ~ F O ) + ~ F ~ F ~ ) - ~ F O  9 2 2 1  q1 Fo + ~ F l F ~ ' - ~ F ~ q 1 q 1 ' - $ F l F o ' q 1 '  
at 

-iq1F0'~q1'- $FOFl'ql'+ ~ F 0 F d q 1 ' ~ -  iFoFo'qi - zql 3 2 , u  FO FO 

-$Foqlqi'F{ - ;FoFlql" - yFoq1Fo'q1" +-:Fo2q1'q1'' + $qI'F{ql'' 

- ~ F l " q l " +  EF0'qln2 - iFo2qf l  - L F { q C  - 1 F  2 041 ZF 0 0) + E  2441 "F0(3) 

-2q2'Fo(3) - $?qlql"F0(3) - 491 2 ' F  1 (3) - fFo2q1q,(3) - $Fl'ql@) 

+zFoq1 41 1641 0 41 16 Oq2 
- + F ~ q l ' ~ '  - &qiFo)ql") + $Foql'ql" - kF042 '~)  

16 

23 I (3) - 11 F 1) 0) + 5poq1~~q10) - I F  0) - & q 1 q 1 ' ~ o ( 4 )  

-+q12F0(5) - hFoq1q1". (4.8~) 
If one takes the proportional deformation, q1 = 2x, q2 = 0, one obtains the result of [2] 



3554 

aF2 I - = T ~ 2 ( 3 ) + ; ~ 2 ~ o ' +  $ F ~ F ~ ' +  $ F ~ F ~ ' -  ; F ~ F ~ ' +  3 ~ ~ ( ~ )  - 2 
at  

De-Hai Zhang and Zu-Yu Wu 

-; FoFI' + 5 FoFd - 3xFo3 - 6xFd2 - 9xFoFZ - ZXFO'~) 

(4.9c) - ; x ~ F ~  2 '  F~ - 3x 2 F~ r F~ I, - h z ~ o ~ o  (3) - ax I 2 F~ (5) . 

Equations (4.8) are the expanded form of the general deformed KdV equations. 
Equation (4.8~) is just the usual KdV one. Starting with the second expanded form of 
the general deformed KdV equations, the general form of the equations is 

F +%FoF,'+;F;Fn+H,(qi ,..., 4x.Fo ,..., Fn-i). (4.10) a F" - = 1 (3) 
at  a n  

As these equations are the non-homogeneous linearized equations of the usual KdV equation, 
we call them the derived non-homogeneous linearized ~ d ! f  eqwtions. Here the nonlinear 
non-homogeneous terms H.(ql, . . . , qn, Fo, . . . , Fa-,) are not arbitrary, but are determined 
completely by expansion of the general deformed KdV equations. One is familiar with 
the homogeneous linearized KdV equation [7], by the use of which the symmetries of the 
KdV equation can be obtained. However, we are not familiar with the non-homogeneous 
linearized KdV equations. Speaking generally, it is not easy to find their exact solutions. The 
most important property of the non-homogeneous linearized KdV equations derived from the 
general deformed Kdv equations is their exact solvability. The method for obtaining their 
solution and some exact solutions of the derived non-homogeneous linearized KdV will be 
given in the following sections. Since the general deformation can be taken arbitrarily order 
by order, the derived non-homogeneous linearized KdV equations will appear in innumerable 
new types. This extends our field of research considerably. 

5. The general deformed exponential function 

The procedure for solving the general deformed KdV hierarchy is similar with the usual Kdv 
hierarchy [SI. The difference is that the operation involved is applied to the general deformed 
differentials, which are more tedious than the usual ones. First we have to introduce the 
general deformed exponential function. Using it we construct a general deformed differential 
operator of order M, the so-called 'clothes' operator, which has M known null states. Finally 
we construct a 'dressed' operator by means of this 'clothes' operator. We can prove that 
this 'dressed' operator is just the exact solutions of the general deformed KdV hierarchy 
with M soliton-like solutions. After expanding this 'dressed' operator in the deformation 
parameter we obtain the exact solutions of the derived non-homogeneous linearized KdV 
equations. Since the deformation functions can be chosen arbitrarily, we are able to obtain 
many new, solvable partial differential equations and their exact solutions. We believe that 
there are in this field many new interesting questions which merit further investigation. 

In analogy with the usual case, we introduce a general deformed exponential function 
exp,(x, a), the definition of which is 

(5.1) 

where a is an arbitrary non-zero complex parameter. The exact form of the general deformed 
exponential function can be given only in special cases. For example, the proportional 
deformation [2] has the following results: 

( D  eXp&, a))  = a exp, (x.  4 

41 ( x )  = 2.r. q2(x) = q3(x) = . . ' = 0 ( 5 . 2 4  



General deformed KdV equations 3555 

exp,(x, a) = 6%) 

[n]! = [1][2]. . . [n] [n] = E ~ ( I  - ( I  - E ) ” ) .  (5 .W 
It is not easy to find the general formulae of the general deformed exponential function in 
general cases. Therefore we need the expression of exp,(x,n) expanded in terms of E.  

Considering that (5.1) becomes 

when E equals zero, we suppose the expanded expression of exp,(x, a) in E is 

Using equation (4.4) and substituting (5.4) into (5.1), we obtain the system of equations 
satisfied by the hj(x,  a) as 

m 

*=O 

aeax = a eax (5.3) 

exp,(x,a) = e ~ X ( 1 + ~ h ~ ( x , a ) + ~ 2 h 2 ( x , a ) + . ~ . ) .  (5.4) 

hi f ia2ql = 0 (5.54 

(5.56) 1 h“ + La3 2 + 1 2 hi + $?qihl +oqih; + 541 1 41 4a 42 =O. 
Solving these equations we obtain 

h l ( x , o )  =-fa2/q1 dx (5.W 

where all constants of integration are taken to be zero for simplicity. It can be easily 
deduced that this process of solution can go on order by order without difficulty. Then the 
expanded form of the general deformed exponential function can be given. 

Now let us construct the M-functions, which are very useful later on: 
Y k ( X . t p )  =exp,(~,a~).exp(a,P.~,)+bkexp,(x,pak) . e x ~ @ ~ o , P . i , )  (5.7) 
where { a k ] ,  (bk], (k = 1,. . . , M) are arbitrary complex constants with the requirement that 
a k  #a, fork # 1, and p is the Nth root of 1, i.e. 

(5.8) 
They are independent functions due to the different choice of parameters U k .  In  accordance 
with definitions (U), (5.7) and (5.8), one can easily verify that the functions y k ( x ,  tp)  have 
the following important property: 

N p = 1. 

(5.9) 

( D N Y k )  = a; ’ Y k .  (5.10) 
We need to construct a Mth-order general deformed differential operator @ which takes 

. . € : y k = O  ( k = l ,  ..., M). (5.11) 
the abovementioned M-functions as its null states: 

Here @ is given by 

(5.12) 
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Since there are two columns to be equal in the determinant after Q acts on yk, it is obvious 
that (5.11) is proved. The above determinant expands in the last column and its minors 
are placed in front of the operators D'. This means that the operator CJ has the following 
expansion: 

CJ = DM + Z.+,_lDM-' +. . . + Zo (5.13) 

z- I -  - ( - I ) ~ - ~ A J A ~  (5.14) 

where Ai is the determinant of remained matrix of the following (M + 1) x M matrix 
deleted the (i + 1)th row elements, 

De-Hai Zhang and Zu-Yu Wu 

(5.15) 

A; = det (A without the ( i  + 1)th row) 

Due to the independence of the M-functions yk, the first determinant AM is non-zero: 

(i = M , M -  1 ,..., 1,O). (5.16) 

AM # 0. (5.17) 

The inverse of the operator Q can be defined, being a general deformed pseudo-differential 
operator: 

CJ-l = D-M + vID-M-' + + . . . , (5.18) 

In accordance with the calculating rules given in section 2, the operator Q-' can be expressed 
by 

Q-' = D-M(l  - Z M - ~ D - '  + (-ZM-Z + ZM-1(Q-'ZM-1))D-'f. . .). (5.19) 

In the following section we will use the operator Q as 'clothes' to 'dress' some operator. 

6. The 'dressed' operator 

We define a 'dressed' operator 

L = ODNCJP-' (6.1) 

where the 'clothes' CJ are defined by (5.12). We shall prove that this 'dressed' operator is 
simply the solutions of the general deformed Kdv hierarchy introduced in section 3: 

The method of proof is similar to that due to Dickey [8] and has been used in 131. Since the 
L-operator used in the general deformed KdV hierarchy is the Nth-order general deformed 
differential operator, we must confirm that the L-operator defined by (6.1) does not have 
the negative power terms of D .  To do this a decomposition L = L+ + L- is introduced, 
where L+ keeps the part of the non-negative powers of D ,  and L- is its negative power 
part. Thus we have 

L+@ - C J D ~  = -L-@ (6.3) 



General deformed M V  equations 3557 

and then the two sides act on the M-functions yk given by (5.7) as 
(L-@)Yk = -(L+@)yk f (@DN)Yk = -L+(@Yk) + @ ( o N y k )  

= -L+ . o+  @ .a:yk U:. @yk = 0. (6.4) 
Equation (5.10) is used here. It is notable that we only have L+ . 0 = 0 and we cannot 
make the deduction (L-@)yk = L-(@yk) = L- . 0 = 0 due to L- . 0 # 0. From the r.h.s. 
of (6.3), the highest order of the operator D in L must be ( M  - 1). From the 1.h.s. of (6.3) 
the lowest order of the operator D in L has to be zero. Therefore the operator L-@ is the 
( M  - 1)th-order general deformed differential operator. From AM # 0 and (L-@)yk = 0 
we obtain for this ( M  - 1)th-order operator: 

L-@ = 0. (6.5) 
Due to the existence of the inverse of #, we have 

L- 0. @-I = 0. (6.6) 
Therefore the operator L constructed by (6.1) is indeed the Nth-order general deformed 
differential operator. 

Using the definition of the 'dressed' operator, it is easy to give its Nth root, 
L'/* = @D@-' .  (6.7) 

LPIN = @DP@-'. (6.8) 

R P -  - LP/N + (6.9~) 

S = R p @  - @ D p  (6.9b) 

s = - L p / N @ .  (6.10) 

The operator LP" is also easily obtained to be 

Let 

we have 

We obtain the derivative of (5.11) with respect to tp: 

0 = &yk + @ j %  = & Y k +  @DpYk = &"Yk + R p @ Yk - Syk = (4 - s ) y k  (6.11) 
where (5.9) is used. From (6.10) the highest order of the operator S is (M - 1). and 
from (6.9a) the lowest order of S is zero. So is 6 due to the highest term of @ being 
independent of time. Therefore the operator ( 6 4 )  is the (M-])&order general deformed 
differential operator. Similar with the reason that the operator L- @ equals zero, i.e. AM # 0 

(6.12) 
and (4 - S)yk = 0, we obtain 

4 - S = 0 i.e. 6 = Rp@ - @DP. 

Now let us consider the time evolution of the 'dressed' operator: 
L = & D N @ - I  - Q D N @ - ' & @ - ~  

= ( R ~ @  - @D')D~@-'  - @ D ~ @ - ' ( R , @  - @DP)@-' 

= R , @ D ~ @ - '  - Q D ~ Q - I R ,  
= RpL - LRp (6.13) 

i.e. i = [L!/", L] is established. 
In conclusion, therefore, the 'dressed' operator (6.1) automatically gives the solutions 

of the general deformed KdV hierarchy. Since @ is given by (5.12). they,: by (5.7), and the 
exp,(x, a) by (5.4),(5.6), we can finally obtain the concrete expression of each coefficient 
of the operator L, i.e. the exact solutions of the general deformed differential equations. 
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7. The exact solutions of the non-homogeneous linearized KdV equations 

As a standard example of the general deformed KdV hierarchy, we discuss the general 
deformed ~ d v  equations and their non-homogeneous linearized equations. In this case 
p = 3, N = 2 and p = -1. In accordance with the notation of sections 3 and 4, 

De-Hui ulang und Zu-Yu Wu 

L = D Z +  VlD+ Vo (3.3) 
where 

Vo = Fo +€Fl  + E ' F ~  +. . . 

Vi = ~ q i F o + ~ ~ ( q i F i  +$&)+.... (4.57) 

What we want to get are the M soliton-like solutions, where M is the soliton number. 
Using (5.13) and (5.19) in L = QD2@-',  we obtain 

VI = Zu-I - (Q2Zu-i)  (7.1) 

- ( Q ~ M - I ) ( ~ U - I  - ( Q 2 Z u - d )  (7.2) 

Vo = Zu-z - (Q2Zu-z) - (DQZu-i)  - M2DZu-i) 

where 

(7.3) 

However, the general expressions of Z ,  are too complicated to be written; thus we only 
consider the double soliton-like case for simplicity. In this case, M = 2, we take U , ,  bl, uz 
and bz as the double soliton-like parameters, and obtain y1 and yz as: 

yk(X, f) = (bk eXp(-Uk3f - UkX) + eXp(Uk3f + U k X ) )  
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and 

(7.5a) 

(7.5b) 

( 7 5 )  

Using all of these expressions we can obtain the functions Fo, F1 and F2 by means of (7.2)- 
(75). Since the general formulae keeping undetermined deformation are so long that they 
are not suitable to be published, we only give a special, case as an example. In order to do 
this we take a concrete general deformation at will: 

41 = x 3  q2 7 2x. (7.6) 

(77.74 

Then the expressions for Fo, F, and Fz given in (4.8) become 

Fo = ; F; F; + a F ~ O ) ,  

$1 = $F1") 4- FoFi' + F1 Fo' - %xFo2 - 4 0  F ' - $x2F0F; - TxFo'' - $x2F0"(7.7b) 

F2 = LF(3) z + ZF o F '  2 + ~ F z F o ' + ~ x F o + T x  21 3 Fo 2 - ~ x ' F o ~ - ~ x F o F I  

fT-x 585 2 F~ I - ; i ~ o ~ o  9 I - T~ 39 4 - % ~ F ~ Z F ~ ' -  % ~ F ~ F ~ ' -  ; x 5 ~ 0 1 2  8 4 

- ? F l ' - ~ x  n 2  FoF1'+$F1F1'+yx3F/- $ X ~ F ~ F / - ~ ~ . X ~ F ~ ' F /  

-TxFl'! 27 - !Foe) + yx4F0@) - L x 6 ~ 0 ~ 0 0  - $x2F1(3) 2 

-2x5Fo(4) 2 - 1 1 6 ~  6 Fo (5 )  . (7.74 
The double soliton-like parameters have to be taken as concrete values at will in order 

a l = l  b l=2  a 2 = 2  b=1. (7.8) 

to avoid long results: 

Then from (7.4) we have: 
= (ze-i-x + er+x) + x4(-ae-+= - 

+[(-+2 + 4.6 - g X 7  + &x8)e-r-x 

y2 = (,-8f-b + e8f+b ) +X4(-;e-8r-b - f e w 2 ) E  

+(-ax2 + ;x6 + &x7 + Ax 8 )e r+x ] E  2 + ow3 

+ .ix6 -~.?ix7 + +S)e-sr-k 

+(-x2 + $x6 + &x7 + p )e E + o(€p. 

(7.9a) 

(7.96) 
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Finally, from (7.2) and (4.6) the exact solution of (7.74 (7.7b) is given by 
Fo = $(168e2+b + 504e4f+4x - 1344e'6r+4z + 378e6'+" - 61)48e'~'+" 

-8064emr+8x + 8064~32+& - 3528eW+10x + 21168e3~t+1a - 756em-1" 

+1512&36'+12 - 12og@f+12x + 5292e38'+141 - 141 12e50r+14x 
+5504~4Or+I6x - 80@~52+16X - 1512e541+I" + 1512e66r+l& 

-84e56f+2Qx + 504~68r+ZOx + 4%70r+Zzx 

(7.10~) 

) 
(-2 - 3e2+2" + 6ei6r+4= + e~8r+6x)-4 

FI = 24x2[-(6 + &)e2+& + (-9 + l ~ e ~ ' ~ "  + (48 + 128x)e'6'+4x 

+(126 + 
+(18 + 4 8 ~ ) e ~ + " ~  + (-138 + 232x)e3k+'0x + (-63 + 36x)e"'+l2" 

+(-6 + 16~)e~~'+'" + (18 + 24~)e'"'+'~~ + (3 - 4 ~ ) e ~ ~ + ' " ]  

x (-2 - 3e2+2" + 6e16r+4x + e18r+" )" 

+ (69 + ll&r)ezm+& + (-144 + 3 8 4 ~ ) e ~ ~ + "  

(7.10b) 

FZ = $[(252+ 756x4 - 2 5 2 0 ~ ~ ) e ~ ~ ~  + (4032+ 1 2 0 9 6 ~ ~  - 1 6 1 2 8 0 ~ ~ ) e ~ ~ + ~ ~  

+(7560 + 2 2 6 8 0 ~ ~  - ~ 7 9 6 3 2 ~ ~ ) e ~ ~ ' + ' ~  + (252 + 756x4 - 10080x6)e40r+'6x 
+(252 + 756x4 - 2 5 2 0 ~ ~ ) e ~ ~ ' + ~ ~  

+(84 + 336x + 252x4 + lOo8X5 + 5 0 4 ~ ~  + 16x7)e2+> 
+(-672 - 5376x - 2016x4 - 1612.8~' - 1 6 1 2 8 ~ ~  - 1 0 2 4 ~ ~ ) e ' ~ ' + ~ ~  
+(189 - 756x + 567x4 - 2268~' + 1134x6 - 3 6 ~ ~ ) e ~ * + ~ *  

+(-3024 - 12096~ - 9 0 7 2 ~ ~  - 36288~' - 2 0 1 6 ~ ~  - 2 8 8 0 ~ ~ ) e ' ~ ' + ~ ~  
+(-4032 - 8064x - 1 2 0 9 6 ~ ~  - X192r' - 4 2 3 3 6 ~ ~  - 3 0 7 Z ~ ~ ) e ~ ' + ~ ~  

+(-1764 - 9072x - 52.92~~ - 27216~' - 3 0 7 4 4 ~ ~  - 216Ox7)eur+'Ox 

+(lo584 - 22176~ + 31752x4 - 66528~' - 130032~~ - 
+(-378 - 3024x - 1 134x4 - 9072~' - 9072x6 - 576s7)eU'+'" 
+(-6048 + 48384~ - 1 8 1 4 4 ~ ~  + 145152~' - 145152.~~ + 9 2 1 6 ~ ~ ) e ~ ~ ' + ' ~  
f(2646 + 5544~ + 7 9 3 8 ~ ~  + 16632x5 - 3 2 5 0 8 ~ ~  + 
+(-7056 + 36288~ - 2 1 1 6 8 ~ ~  + 108864~~ - 122976~~ + 8640x7)e'0'+'4X 

+(-4032 + 8064~ - 1 2 0 9 6 ~ ~  + 24192~' - 4 2 3 3 6 ~ ~  + 307ZX7)e52'+1" 

+(-756 + 3024x - 2268x4 + 9072~' - 5 0 4 ~ ~  + 7 2 0 ~ ~ ) e ~ ' + ' ~ ~  
+(756 + 3024x + 2268x4 + 9 0 7 2 ~ ~  f 453bx6 + l 4 4 ~ ~ ) e ~ ~ ~ + ~ ~ '  

+(-42 + 336x - 1 2 6 ~ ~  + 1008~' - 1 0 0 8 ~ ~  + 64x7)e5a+20x 

+(21- 84x + 63n4 - 252x' + 126.8 - 4x7)e70r+2b] 

(7.10~) 
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where FO is a standard double soliton solution of the usual KdV equation (7.7a). Due to 
this reason we call the solutions Fo, FI and Fz double soliton-like solutions. Substituting 
solutions (7.10) into,their equations (7.7) one can check directly that they are indeed the 
exact solutions of these equations. In order for reader to do this check more easily, we are 
able to supply by e-mail a Mathematica program which can save keyboarding and check 
that these functions are certainly the exact solution of these equations. This check confirms 
again that our proof and conclusion in section 6 is  correct.^ Of course, we can produce 
infinitely many sets of exact solutions for same equations in accordance with the procedure 
described before. Only due to space limitations do we give this set of special exact solution 
as an example. 

It is remarkable that only the exact solutions, and not the approximate ones, of the 
non-homogeneous linearized KdV equations are obtained through the expansion of the 
deformation parameter E .  The functim Vo seems to be the generating functional of the 
exact solutions. 

8. Conclusion 

By using the expansion method in the deformation parameter, we obtain the approximate 
equations of the general deformed Kdv equation order by order, i.e. the derived non- 
homogeneous linearized KdV equations. By using the same method we obtain the 
approximate solutions of the general deformed K ~ V  equation order by order. However, 
the approximate solutions of various orders are just the exact solutions of the approximate 
equations of the various orders of the general deformed Kdv equation! The reason is 
simple. They are only the different expanded forms of the just same identity. However, 
from the point of view of nonlinear partial differential equation theory, this should be a new 
phenomenon about the exact solutions which is worthy of in-depth study. 

It is clear that this solving procedure not only can find the exact solutions with 
the arbitrary soliton number for the general deformed KdV equations with the general 
deformation chosen concretely (if your computer has enough memory), but also can obtain 
the exact solutions of the higher cases, for example, the general deformed Boussinesq 
equations and their derived non-homogeneous linearized Boussinesq equations. 

It is notable that the whole method of research, from the general deformed KdV hierarchy 
to their exact solutions, can be generalized to the various extensions of KdV hierarchy, 
such as the KP hierarchy, supersymmetry, etc. The reason is essentially that if the usual 
differential operator is replaced by the general deformed differential operator in the usual 
KP hierarchy [9] ,  then the general deformed KP hierarchy can be obtained. This work will 
be published by us elsewhere. 
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